Lab 6 Report: Planning and Following Paths
around the Stata Basement

Team #13

Kaleb Blake
Lucian Covarrubias
Seth Fine
Jesse George
Ivory Tang

6.141 Robotics, Science, and Systems - Spring 2022
April 16, 2022

Editor: Lucian

1 Introduction
By: Ivory Tang

Throughout this lab, we explored open problem of path planning along with
a method to follow set trajectories. We implemented and compared two dif-
ferent types of planning algorithms, search-based via A* and sample-based via
Rapidly-Exploring Random Trees (RRT). We worked with a known global map
of the Stata basement where we would eventually test our robot. Using A* as
a planner, our robot could take in a start and end point and create a near opti-
mal path between them. In addition, we implemented a pure pursuit algorithm
which, given the planned trajectory, would issue steering commands to our car
to follow the trajectory as closely as possible. After implementing the algorithm
and passing unit tests, we first tested our code in simulation. This allowed us to
fine tune certain parameters such as look-ahead distance and decide on which
planning algorithm was more appropriate for our use case with the necessary
optimizations. Once we were confident in the simulation results, our algorithms
were ready for real time path planning and tracking on the robot. Throughout
our implementation and testing, we needed to optimize for runtime efficiency
which led us to utilize and explore downsampling of the search space.

2 Technical Approach

2.1 Overview

By: Ivory Tang

In order to implement a path planning algorithm and then follow it precisely,
there are multiple necessary parts.

Firstly, an accurate yet efficient planning algorithm needs to create a trajectory
for the robot to follow given a start and end point and the map the robot will
be traversing in. This planning algorithm needs to be quite accurate so that the
racecar is not crashing into walls or enters unknown spaces such that it is able
to reach its goal in a timely fashion. There are many algorithms out there which
are useful for different situations, and we carefully considered which algorithm
would be best for our situation before implementing it.

Secondly, a pure pursuit module is necessary to issue driving commands to the
racecar given a precomputed trajectory. Depending on the look-ahead point
and where the robot is relative to the path it should be following, the steering
angle published will change automatically.

Finally, we tested the path planning and pure pursuit model in simulation,
resulting in the car following the trajectory fairly closely. To test on the real
racecar, we published our steering angles to the racecar and adjusted for real
world factors, resulting in the racecar successfully navigating between points in
the stata basement.

2.2 Path Planning - Search Based

By: Lucian Covarrubias

2.2.1 Method

The search based method consisted of an A* search algorithm operating on the
grid space of the map. A* search takes as input the start and goal positions
as well as an occupancy grid. For every node it searches, the node is assigned
a cost of reaching it plus a heuristic cost. In our case, the heuristic is simply
Euclidean distance from the current node to the goal point. Because costs are
updated in this manner, A* does not waste time searching for paths that are far
from the goal position and is much more efficient than other algorithms such as
Dijkstra’s, Breadth First Search, or Depth First Search. Upon finding the goal
position, A* returns a trajectory built from every grid location that led to the
goal.

An important component of search based planning is how we represent the
search space. The map provided to the robot is expressed as an occupancy grid,
which contains points in pixel coordinates, along with a transformation matrix
describing the pose of the map in real world coordinates and a resolution which
determines how the map scales to the real world. In order to use pixel coor-
dinates in real world space, a conversion from pixel coordinates (u,v) to real
world coordinates (x,y) is necessary. This conversion is constructed from the
transformation and resolution features of the occupancy grid.

ri1 iz T3 tig u - resolution T
To1 T2 T23 12 v-resolution | | y
r31 T3z 733 O 0 0

0 0 0 1 1 1

Given the occupancy grid, it’s necessary to clarify where obstacles are and dilate
them to account for the size of the car as it would navigate the map. Dilation is
the process of making obstacles larger in the map representation by convolving
the map with a filter. After dilation, every pixel value is discretized to 1 or 0
via the following function.

1 >0
P(x){ 0 <0

While the pathfinding guarantee of A* is valuable, the slower runtime due to
an exponential search space is detrimental to a real time path planning system.
In order to speed up the path planning time of A*, we tested out methods
of reducing our search space via downsampling. Downsampling is the process
of taking our original map, and casting it to a reduced space where groups of
pixels in the original representation correspond to a single pixel in the reduced
representation.

As the search space is reduced, information is lost which means there is no
more optimality guarantee for A*. That being said, the performance of A* in
these reduced spaces was effective enough to quickly generate valid paths for
the robot to traverse. As seen in 1, A* has significantly reduced runtimes when
working on downsampled maps, while still generating valid paths for the robot.
As paths become more complex, the speed benefits of downsampling become
increasingly obvious. In testing, we benchmarked A* performance with down-
sampling factors ranging from 1 (no downsamplng) to 5 (space reduced by 52).

2.2.2 Simulation evaluation

In simulation, the robot was able to plan a path between any arbitrary set of
points in under 8 seconds using only a downsampling factor of 2. With higher

A* Runtime VS. Downsampling Factor

B0
== Shorl Path == Medium Palh Complex Path

wan
@
£
=
=]
=
L=
E
5 20
I

| ¥=

1 2 3 4

Downsampling Faclor

Figure 1: A* Runtimes on similar paths in increasingly reduced search spaces.

Figure 2: Paths generated by A* with downsampling of 5.

downsampling factors, computation time decreases at a roughly inverse expo-
nential rate. We found a minimum viable computation time of under .5 seconds
for any possible path using a downsampling factor of 5, while higher factors
would occasionally fail to find paths. As seen in figure 2, which were generated
using a downsampling factor of 5, generated paths are still viable for the car to
travel.

2.2.3 Strengths/weaknesses

One strength of A* search is that it is a complete algorithm, meaning it will find
a solution if one exists. This sacrifices speed to some extent, as our algorithm
must search a larger space to find a solution. That being said, the use of a
proper heuristic and a downsampling of the search space allows A* search to
perform well in the context of the problem posed to our robot. In the given
problem, the map is static, so we don’t need to quickly react to sudden changes
in the environment. With this in mind, the .5s worst case runtime in the Stata
basement environment using a downsampling of 5 is fast enough for anything our
robot may need to do. This would account for changing destinations, or adding
objectives to travel to while still being able to navigate potentially narrow areas
without failing to find a viable path.

2.3 Path Planning - Sampling Based
By: Seth Fine

2.3.1 Method

We implemented the rapidly-exploring random trees algorithm (RRT). This
algorithm is apart of the sampling based path planning family. In this algorithm,
the robot has a known map. From this known map, the search space and its
bounds are determined. Additionally, the robot is given occupancy information
in the form of a discretized grid of probabilities (same as search based planning
above). Using this map and occupancy information, when the algorithm receives
initial and goal poses, it undergoes the following iterative process. Randomly
select a new node from the search space. This randomness is slightly optimized
through a parameter controlling the bias of random sampling towards the goal
point. After the new node is chosen, the nearest existing node is identified.
Then, using raycasting to conclude that no obstacle blocks the straight line
path from the existing nearest node to the new node, the new node is added to
the tree with the existing nearest node as its parent.

2.3.2 Simulation evaluation

In simulation, the implementation of RRT behaves as expected. It quickly is
able to identify a viable obstacle-free path from the initial pose to the goal pose.
However, this path is jagged and often takes wide turns. RRT is governed by

Figure 3: These images taken from the simulator deploying the RRT algorithm
demonstrate that RRT produces viable paths from the initial pose to the goal
pose albeit with often small jagged curves. The path on the left took 0.86
seconds to complete while the path on the left took 2.8 seconds, respectively.

two main parameters, max length and goal bias probability. Max length is an
upper threshold on the distance a new node can be from the nearest existing
node. Further, the goal bias probability variable skews the random sampling
slightly in the direction of the goal pose. Optimizing values over these variables
we were able to improve the optimality of the solution RRT was producing in
simulation as shown below.

2.3.3 Strengths/Weaknesses

In comparison to the search based path planning implementation of the A*
algorithm, sampling based approaches are faster but produce less optimal paths.
In our case, less optimal is defined as greater total distance travelled while still
producing a viable path which avoids walls and obstacles. Additionally, the
sampling based algorithms work in continuous space meaning the solution space
does not to be discretized. This property makes sampling based approaches
better equipped to handle models with multiple degrees of freedom such as a
system of robotic arms and levers. Overall, while sampling based approaches
lose optimality they provide rapid and practical solutions. For this lab, we
chose to implement RRT because of its rapid runtime, but it is worth noting
the existence of a modified RRT algorithm RRT* which does converge to an
optimal solution. This algorithm builds upon RRT by augmenting nodes to
include a cost variable which tracks the cumulative distance from the initial
pose to the node. Then, using this cost augmentation, when a new node is
added to the tree, we are able to check if any nearby nodes can decrease their
cost by rerouting through the new node. These strengths and weaknesses were
well-exemplified in the simulator, where the RRT algorithm produced paths
based on manually set initial and goal poses.

2.4 Path Following
By: Jesse George-Akpenyi

2.4.1 Non-ideal Conditions

Once a trajectory has been mapped out, the next course of action is for the
robot to follow that trajectory. In an ideal world, we could give the robot path
coordinates that it would follow exactly, navigating the pre-computed path by
simply turning according to the curvature of the path as it moved forward.
However, the uncertainty in sensor measurements and the car’s odometry means
that we are never fully certain of the position of the robot in the world. This
means that we must take into account the current estimate of the robot position
as it follows the path and implement a way to correct any deviations from the
path.

2.4.2 A Robust Solution: Pure Pursuit

Pure pursuit is a robust trajectory following algorithm that accomplishes both
of these requirements, accounting for the robot’s position and deviations from
the path trajectory. The algorithm works by first detecting the closest point
on the trajectory to the robot. Then a goal point is selected further along the
trajectory (closer to the end of the trajectory) that is a certain distance away
from the robot’s current position. The robot ”looks ahead” to this goal point,
with driving instructions being calculated to get the robot to that point from it’s
current position. This process of determining the goal point is done repeatedly
as the robot moves, causing the robot to follow the planned trajectory and to
correct any deviations the robot has from this trajectory. Even a relatively
jagged and rough trajectory can be reliably followed with a controller based on
this algorithm.

2.4.3 Simulation Results and Tuning

The pure pursuit controller was verified in simulation with trajectories built by
choosing points within the RViz representation of the Stata basement. After
verifying that the built trajectories were being followed, we tested the affects of
changing the lookahead distance (which was initially set to 2 meters) to slightly
different values. The velocity of the simulated car was 1 meter/second. The
experiments for different lookahead distances involved having the robot follow
a straight path that had a sharp change in the y direction of 2 meters. The
results of these experiments are depicted in the figure below.

This information on how the pure pursuit controller handles corners at different
lookahead distances for a set speed is very useful in terms of tuning for particular
paths. We decided to leave the lookahead distance of 2 meters unchanged due to
its relative stability in both low curvature and high curvature paths compared

1im 2m Step L 2m

2m Step L

¥ Distance (m)
= N
- o ~ o

¥ Distance (m)
- o
- o ~ o

=)

n
=)
n

"0 12 14 16 18 20 22 24 5 10 15 20 25 30
X Distance (m) X Distance (m)

2m Step r L 3m

Y Distance (m)
-
- n

o
o

o

-0.5
8 10 12 14 16 18 20 22 24

X Distance (m)

Figure 4: These images are of results of a step response to a 2-meter change in y
for the pure pursuit controller set at different lookahead distances in simulation
to understand the effect of changing lookahead distance. From the results we
can see that smaller lookahead distance results allow for tighter corners to be
more reliably followed.

to both shorter and longer lookahead distances. Despite the approximately
five percent overshoot for this step size, the 2 meter lookahead distance has
a comparable settling time to the one meter lookahead controller and would
demand less extreme steering angles for the vehicle fo follow.

3 Experimental Evaluation
By: Jesse George-Akpenyi

The performance of the physical robot was roughly equivalent to simulation,
with the exception that the estimated pose of the robot was significantly more
noisy due to the slight differences in the geography of the Stata basement. How-
ever, the trajectories charted by the path planning module were entirely feasible
within the Stata basement’s boundaries and were successfully followed by the
pure pursuit controller. Longer trajectories would be needed to verify how error
resistant the controller is. However, the surprising amount of traffic that crosses
through the main long hallway of the basement regularly prevented such tests

from happening. Yet the initial short trajectory tests, depicted in the figure
below, indicate that the pure pursuit controller is capable of closely following a
path and correcting large deviations of the robot’s position from the intended
trajectory.

Planned Trajectory Following #1 Planned Trajectory Following #2

Y Distance {m)
[S O -)
Y Distance {m)

18 19 20 21 22 23 24 25 17 175 18 185 19 19.5 20
X Distance (m) X Distance (m)

Figure 5: These two images are the estimated trajectories of the robot (blue
and red) based on the particle filter localization method plotted with the actual
planned trajectories (in black). In the scenario on the left, the initial pose of
the vehicle overlapped the starting point of the planned trajectory, resulting in
a very close following of the planned trajectory. In the scenario on the right,
the initial pose of the vehicle was quite distant from the trajectory, however it
quickly begins to converge with the planned path.

4 Conclusion

By: Kaleb Blake

In this lab we explored and implemented path planning and path following algo-
rithms. With respect to path planning we were able to develop A* and Rapidly-
Exploring Random Trees (RRT) algorithms. Both algorithms were able to find
paths if they existed, but the RRT path was less optimal and less smooth, even
though it could find paths faster. We could make the A* algorithm faster with
the use of downsampling, though. We used a pure pursuit algorithm to follow
the predetermined trajectory created from path planning by changing the steer-
ing angle of the car so that it would reach a specified look ahead point if the
steering angle was kept constant. We combined these two algorithms to plan a
path and follow it in simulation and implemented them on the racecar to see it
autonomously drive around the Stata basement.

5 Lessons Learned

Kaleb: In this lab, I helped out with debugging pure pursuit and running
simulations and testing out our code on the real car. I got a better understanding

on how pure pursuit works because in the wall following lab we didn’t really
implement pure pursuit. Instead we used a trial-and-error based PID approach.
In fact, when I tried to implement pure pursuit equations at first to get the PID
values, my wall follower did not work. I realize now that pure pursuit is most
useful, when you have a predetermined path or trajectory to follow. Since, I
was working primarily on debugging, I also got to practice reading code written
by others and understanding it, as well as using print statements and analyzing
outputs to decipher where the problem is. This lab I was more satisfied with
my communication on what progress I have accomplished when working and
understanding the progress that others have made, so I can more smoothly
jump in to help out. I think as a team we worked very well in completing things
in parallel too, as we even got one of the extra credit tasks done.

Lucian: For this lab, I worked on optimizing our search based planner (A*) by
implementing dilation and downsampling on our search space, and debugging
the A* algorithm originally written by Ivory. Additionally, I wrote the infras-
tructure of our path planner, such as the map setters, and conversion functions
between pixel and world coordinates, and implemented our integrated system
on the robot. Being in a position to work on many different facets of this project
allowed me to see how everything fit together, which gave me a high level of
respect for the organization and moving parts between the different features
we’ve written over the last few weeks. Over the span of this course, I've learned
to fully trust my teammates to be able to implement the tasks assigned to them,
which has allowed me to focus entirely on what I need to do as well. I think this
trust and parallelization has allowed our team to quickly implement features
and come together to debug the difficult issues in our programs.

Seth: In this lab, my work focused on implementing the RRT algorithm. While
this allowed me to explore the specifics and strengths/weaknesses of this partic-
ular algorithm, I was also able to connect how RRT relates to other well known
algorithms. Specifically, relating in the case of RRT* the optimality statement
by using the process of relaxation common in graph optimization problems. It
was cool to be able to connect concepts from prior work to this course. From
the implementation and testing perspective, I saw the necessity for modular
design and modular testing which made adjusting from RRT to RRT* possi-
ble. Finally, from a team and communication perspective, we divided work up
well doing designs collectively, implementations individually, and coming back
together to test integrations.

Jesse: In an attempt to overcome the onslaught of work that I knew this lab
would entail, T began to write out as much as the code for pure pursuit (the
section of the lab that I chose to work on) as quickly as possible. However, I
neglected to include many helpful debugging statements and to check the func-
tions I was implementing before feeding them into other parts of the algorithm.
As a result, I had to resolve many issues that I could have caught earlier on if
I had been more careful in the steps I was taking and checking my work as I

10

went. Another valuable lesson I learned during this lab was that separation of
function in a larger team like this is very important to maintaining efficiency.
Thanks to the fact that we could tackle this lab from two essentially separate
angles, we were able to implement something that would’ve taken all of us much
more time if we tackled the entire project at once.

Ivory: In this lab, I focused on the search based implementation and wrote
the A* algorithm. I was most interested in the path planning portion of this
lab, so I also explored the sampling based algorithms via the research papers
provided and got a good sense of the strengths and weaknesses of search based
versus sampling based algorithms and the different scenarios they are each good
for. Having taken many algorithm classes in the past, it was really interesting
to see some of those algorithms applied in a real world scenario on our racecar.
The importance of optimizing algorithms to achieve greater efficiency was also
emphasized specifically by this lab, as the map could be complicated and a
slow algorithm could prevent us from finding an accurate path within time
restrictions. This lab really elucidated why there are so many teams and research
groups working on constructing new algorithms and improving on existing ones,
for there are so many tradeoffs to consider between accuracy and speed even in a
relatively simple problem such as navigating the stata basement in which there
were few obstacles along the way. Finally, from a team perspective, this lab
was quite modularized, meaning splitting up the work and testing the various
modules separately and in simulation was effective before we combined the pure
pursuit and planning algorithm part to create our final product.

11

